Question #86fe6 Calculus Limits Determining Limits Algebraically 1 Answer Andrea S. Dec 4, 2017 lim_(x->0) (x^3+2x)/e^(3x) = 0 Explanation: As for x=0 the denominator [e^(3x)]_(x=0) = e^0 = 1 is not null, the function is continuous and: lim_(x->0) (x^3+2x)/e^(3x) = [(x^3+2x)/e^(3x)]_(x=0) = 0 Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 1081 views around the world You can reuse this answer Creative Commons License