Evaluate the limit? lim_(x rarr 0) (1-cos2x+tan^2x)/(xsin2x)
1 Answer
Sep 12, 2017
I assume that we seek:
L = lim_(x rarr 0) (1-cos2x+tan^2x)/(xsin2x)
This is of an indeterminate form
L = lim_(x rarr 0) (d/dx(1-cos2x+tan^2x))/(d/dxxsin2x)
\ \ = lim_(x rarr 0) ( 0+2sin2x+2tanxsec^2x )/(2xcos2x+sin2x)
\ \ = 2lim_(x rarr 0) ( sin2x+tanxsec^2x )/(2xcos2x+sin2x)
Again, this is of an indeterminate form
L = 2lim_(x rarr 0) ( d/dx(sin2x+tanxsec^2x) )/( d/dx( 2xcos2x+sin2x) )
\ \ = 2lim_(x rarr 0) ( 2cos2x + 2sec^2x tan^2 x +sec^4x )/( 2cos2x - 2xsin2x+ 2cos2x )
\ \ = 2 ( 2 + 0 + 1 )/( 2 - 0 + 2 )
\ \ = 2 ( 3 )/( 4 )
\ \ = 3/2