Question #6c442

1 Answer
Feb 21, 2017

lim_(x->oo) (1+1/x)^x = e

Explanation:

Write the function as:

(1+1/x)^x = (e^ln(1+1/x))^x = e^(xln(1+1/x))

We evaluate now:

lim_(x->oo) xln(1+1/x)

This is in the indeterminate form 0*oo, but we can transform it to the form 0/0 and solve it using l'Hospital's rule:

lim_(x->oo) xln(1+1/x) = lim_(x->oo) ln(1+1/x)/(1/x)

lim_(x->oo) xln(1+1/x) = lim_(x->oo) (d/dx ln(1+1/x))/(d/dx (1/x))

lim_(x->oo) xln(1+1/x) = lim_(x->oo) (1/(1+1/x)*(-1/x^2))/(-1/x^2)

lim_(x->oo) xln(1+1/x) = lim_(x->oo) 1/(1+1/x) = 1

Now, as e^x is a continuous function we have:

lim_(x->oo) e^(xln(1+1/x)) = e^((lim_(x->oo) xln(1+1/x))) = e^1 = e

So, in conclusion:

lim_(x->oo) (1+1/x)^x = e