lim_(x->oo)((x-1)/(x+1) )^x = ? Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Feb 18, 2018 e^-2 Explanation: (x-1)/(x+1) = (x+1-2)/(x+1) = 1-2/(x+1) now making y =- (x+1)/2 we have lim_(x->oo)((x-1)/(x+1) )^x = lim_(y->oo)(1+1/y)^(-(2y+1)) but (1+1/y)^(-(2y+1))=1/(1+1/y)(1+1/y)^(-2y) and then lim_(x->oo)((x-1)/(x+1) )^x = (lim_(y->oo)1/(1+1/y))(lim_(y->oo)(1+1/y)^(-2y))=e^-2 Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 1243 views around the world You can reuse this answer Creative Commons License