Question #67981

2 Answers
Apr 21, 2017

lim_(x -> 0) (e^(3x) - e^(x))/x = 2
lim_(x -> 0) (e^(3x) - ex)/x = oo

Explanation:

If you didn't make a typo and you meant lim_(x -> 0) (e^(3x) - ex)/x Then there is nothing else to do but substitute: (1-0)/0 -> oo

If you meant lim_(x -> 0) (e^(3x) - e^(x))/x Then we have an indetermination (1-1) / 0 = 0/0 And we can use Bernoulli l'Hospital:

lim_(x -> 0) (e^(3x) - e^(x))/x = lim_(x -> 0) ((d/dx)(e^(3x) - e^(x)))/((d/dx)x) = lim_(x -> 0) (3e^(3x) - e^(x))/1 = 2

Apr 21, 2017

2.

Explanation:

We use this Standard Form of Limit : lim_(x to 0)(e^x-1)/x=1.

This will help us evaluate the reqd. limit without L'Hospital's Rule.

Reqd. Limit=lim_(x to 0)(e^(3x)-e^x)/x

=lim_(x to 0) {((e^x)(e^(2x)-1))/x}

={lim_(x to 0) e^x}[2{lim_((2x) to 0) (e^(2x)-1)/(2x)}]

=(e^0)[2{1}]

:." The Reqd. Lim.="2.

Enjoy Maths.!