When x->2, (x^15-2^15)/(x-2) tends to __?

1 Answer
Mar 17, 2017

As xrarr2, ((x^15-2^15))/((x-2))rarr15xx2^14

Explanation:

The function ((x^n-a^n))/((x-a)) (if n is a natural number) is an interesting function.

Note that (x^n-a^n) can be factorized as follows:

(x^n-a^n)=x^n-ax^((n-1))+ax^((n-1))-a^2x^((n-2))+a^2x^((n-2))-a^3x^((n-3))+...............+x^2a^((n-2))-xa^((n-1))+xa^((n-1))-a^n

= x^((n-1))(x-a)+ax^((n-2))(x-a)+a^2x^((n-3))(x-a)+.......+xa^((n-2))(x-a)+a^((n-1))(x-a)

= (x-a)(x^((n-1))+ax^((n-2))+a^2x^((n-3))+....+xa^((n-2))+a^((n-1)))

Hence (x^15-2^15)=(x-2)(x^14+2^1x^13+2^2x^12+......+2^13x+2^14)

and (x^15-2^15)/(x-2)=x^14+2^1x^13+2^2x^12+......+2^13x+2^14

and as xrarr2, (x^15-2^15)/(x-2)rarr2^14xx15=15xx2^14