The function ((x^n-a^n))/((x-a)) (if n is a natural number) is an interesting function.
Note that (x^n-a^n) can be factorized as follows:
(x^n-a^n)=x^n-ax^((n-1))+ax^((n-1))-a^2x^((n-2))+a^2x^((n-2))-a^3x^((n-3))+...............+x^2a^((n-2))-xa^((n-1))+xa^((n-1))-a^n
= x^((n-1))(x-a)+ax^((n-2))(x-a)+a^2x^((n-3))(x-a)+.......+xa^((n-2))(x-a)+a^((n-1))(x-a)
= (x-a)(x^((n-1))+ax^((n-2))+a^2x^((n-3))+....+xa^((n-2))+a^((n-1)))
Hence (x^15-2^15)=(x-2)(x^14+2^1x^13+2^2x^12+......+2^13x+2^14)
and (x^15-2^15)/(x-2)=x^14+2^1x^13+2^2x^12+......+2^13x+2^14
and as xrarr2, (x^15-2^15)/(x-2)rarr2^14xx15=15xx2^14