Question #8536a Calculus Limits Determining Limits Algebraically 1 Answer Jim H Mar 25, 2017 The limit is #0#. Explanation: #lim_(xrarr-oo) x^2e^(8x)# has indeterminate initial form #oo * 0# Rewrite it to use l'Hospital's Rule #lim_(xrarr-oo) x^2/e^(-8x)# Has intial form #oo/oo# so we can apply l'Hospital. # (d/dx(x^2))/(d/dx(e^(-8x))) = (2x)/(-8e^(-8x))# which has form #-oo/-oo# so use llHospital again. #(d/dx(2x))/(d/dx(-8e^(-8x))) = 2/(64e^(-8x)) = 1/32e^(8x)# which goes to #0# as #xrarr-oo# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 918 views around the world You can reuse this answer Creative Commons License