Question #0138c Calculus Limits Determining Limits Algebraically 1 Answer Anjali G Apr 16, 2017 lim_(x->0)frac{1}{sin^3x-1/(x^3)}=0 Explanation: lim_(x->0)frac{1}{sin^3x-1/(x^3)} Multiply the fraction by color(blue)(frac{x^3}{x^3}) to get lim_(x->0)frac{x^3}{x^3sin^3x-1} By direct substitution, this gives: frac{color(red)(0)^3}{color(red)(0)^3sin^3 color(red)(0)-1}=0/-1 =0 :. lim_(x->0)frac{1}{sin^3x-1/(x^3)}=0 Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 1119 views around the world You can reuse this answer Creative Commons License