Knowing that lim_(xrarr0)(1+x)^(1/x)=e, we can see that this limit is in the indeterminate form 0/0. This means we can use l'Hopitals rule to find the limit by taking the derivatives of the numerator and denominator separately.
lim_(xrarr0)((1+x)^(1/x)-e)/x=lim_(xrarr0)(d/dx(1+x)^(1/x))/1
Use logarithmic differentiation to find the derivative of (1+x)^(1/x):
y=(1+x)^(1/x)
ln(y)=1/xln(1+x)
1/y*dy/dx=-1/x^2ln(1+x)+1/(x(1+x))
dy/dx=(1+x)^(1/x)(1/(x(1+x))-ln(1+x)/x^2)
So the limit is:
=lim_(xrarr0)(1+x)^(1/x)(1/(x(1+x))-ln(1+x)/x^2)
=lim_(xrarr0)(1+x)^(1/x)((x-(1+x)ln(1+x))/(x^2(1+x)))
We can move lim_(xrarr0)(1+x)^(1/x) out of the limit as e, but to work with the remaining portion of the limit we will use l'Hopital's again since we have 0/0:
=elim_(xrarr0)(d/dx(x-(1+x)ln(1+x)))/(d/dx(x^2+x^3))
=elim_(xrarr0)(1-ln(1+x)-(1+x)/(1+x))/(2x+3x^2)
=elim_(xrarr0)(-ln(1+x))/(2x+3x^2)
Since we have 0/0, use l'Hopital's again:
=elim_(xrarr0)(-1/(1+x))/(2+6x)
Which we finally can evaluate:
=e((-1/1)/2)
=-e/2