Evaluate the limit? lim_(x rarr 0) x^2(cos(1/x)-1)

2 Answers
Aug 6, 2017

lim_(x rarr 0) x^2(cos(1/x)-1) = 0

Explanation:

We have:

L = lim_(x rarr 0) x^2(cos(1/x)-1)

Let us perform a substitution:

Let u=1/x => x =1/u

Then as x rarr 0 => u rarr oo

Substituting into the limit, we get:

L = lim_(u rarr oo) (1/u)^2(cos(u)-1)
\ \ = lim_(u rarr oo) (cosu-1)/u^2
\ \ = lim_(u rarr oo) (cosu)/u^2-1/u^2
\ \ = lim_(u rarr oo) (cosu)/u^2- lim_(u rarr oo)1/u^2

Consider the second limit:

lim_(u rarr oo)1/u^2

This is a trivial limit as u^2 increases without bound, thus 1/u^2 rarr 0 as u rarr oo, thus:

lim_(u rarr oo)1/u^2 = 0

Consider now, the first limit:

lim_(u rarr oo) (cosu)/u^2

Now, we have -1 le cosu le 1 => -1/u^2 le cosu /u^2 le 1/u^2 , thus:

lim_(u rarr oo)(-1/u^2) le lim_(u rarr oo)(cosu /u^2) le lim_(u rarr oo)(1/u^2)

And using the above result we just established that:

0 le lim_(u rarr oo)(cosu /u^2) le 0

So then by the sandwich, or squeeze, theorem we have:

lim_(u rarr oo)(cosu /u^2) = 0

Thus:

L = 0

Aug 6, 2017

I would use the squeeze theorem.

Explanation:

-1<=cos(1/x)<=1 " " for all x != 0

So , subtracting 1 from each part,

-2 <= cos(1/x)-1 <= 0 " " for all x != 0

Note that x^2 >0 " " for all x != 0, so we can multiply through without changing the inequalities.

-2x^2 <= x^2(cos(1/x)-1 ) <= 0 " " for all x != 0

Since lim_(xrarr0)(-2x^2) = 0 = lim_(xrarr0)0

the squeeze theorem tells us that

Lim_(xrarr0)x^2(cos(1/x)-1 ) = 0