Evaluate the limit? lim_(x rarr 0) x^2(cos(1/x)-1)
2 Answers
lim_(x rarr 0) x^2(cos(1/x)-1) = 0
Explanation:
We have:
L = lim_(x rarr 0) x^2(cos(1/x)-1)
Let us perform a substitution:
Let
u=1/x => x =1/u
Then as
Substituting into the limit, we get:
L = lim_(u rarr oo) (1/u)^2(cos(u)-1)
\ \ = lim_(u rarr oo) (cosu-1)/u^2
\ \ = lim_(u rarr oo) (cosu)/u^2-1/u^2
\ \ = lim_(u rarr oo) (cosu)/u^2- lim_(u rarr oo)1/u^2
Consider the second limit:
lim_(u rarr oo)1/u^2
This is a trivial limit as
lim_(u rarr oo)1/u^2 = 0
Consider now, the first limit:
lim_(u rarr oo) (cosu)/u^2
Now, we have
lim_(u rarr oo)(-1/u^2) le lim_(u rarr oo)(cosu /u^2) le lim_(u rarr oo)(1/u^2)
And using the above result we just established that:
0 le lim_(u rarr oo)(cosu /u^2) le 0
So then by the sandwich, or squeeze, theorem we have:
lim_(u rarr oo)(cosu /u^2) = 0
Thus:
L = 0
I would use the squeeze theorem.
Explanation:
So , subtracting
Note that
Since
the squeeze theorem tells us that