evaluate lim_(x rarr 0) (sin3x-sinx)/sinx ?
1 Answer
Sep 3, 2017
lim_(x rarr 0) (sin3x-sinx)/sinx = 2
Explanation:
We want to evaluate:
L = lim_(x rarr 0) (sin3x-sinx)/sinx
We can manipulate the limit as follows:
L = lim_(x rarr 0) {(sin3x)/sinx-sinx/sinx}
\ \ \ = lim_(x rarr 0) sin(x+2x)/sinx-lim_(x rarr 0) sinx/sinx
\ \ \ = lim_(x rarr 0) (sinxcos2x+cosxsin2x)/sinx-lim_(x rarr 0) 1
\ \ \ = lim_(x rarr 0) {(sinxcos2x)/sinx+(cosxsin2x)/sinx} - 1
\ \ \ = lim_(x rarr 0) cos2x +lim_(x rarr 0) (cosxsin2x)/sinx - 1
\ \ \ = cos0 + lim_(x rarr 0) (2cosxsinxcosx)/sinx - 1
\ \ \ = 1+lim_(x rarr 0) 2cos^2x -1
\ \ \ = 2cos^2 0
\ \ \ = 2