What is L'Hôpital's rule used for?
1 Answer
L'Hôpital's rule is a really useful tool for evaluating limits of an indeterminate form
The theorem states that if we have a limit of an indeterminate form
lim_(x rarr a) f(x)/g(x) = lim_(x rarr a) (f'(x))/(g'(x))
Providing the limit does actually exist.
Proof
A specific proof for the case
In this case,
lim_(x rarr a) f(x)/g(x) = lim_(x rarr a) (f(x)-0)/(g(x)-0)
" " = lim_(x rarr a) (f(x)-f(a))/(g(x)-g(a))
" " = lim_(x rarr a) ((f(x)-f(a))/(x-a)) / ((g(x)-g(a))/(x-a)
" " = (lim_(x rarr a) (f(x)-f(a))/(x-a)) / (lim_(x rarr a)(g(x)-g(a))/(x-a)
" " = (f'(a)) / (g'(a))
" " = lim_(x rarr a) (f'(x)) / (g'(x)) QED
Example
L = lim_(x rarr 0) (e^x-1)/x
If we put
L = lim_(x rarr 0) (d/dx (e^x-1))/(d/dx x
\ \ = lim_(x rarr 0) (e^x)/1
\ \ = lim_(x rarr 0) (e^x)/1
\ \ = 1/1
\ \ = 1