Fin lim_(x rarr 0) ((cotx)(1-cos2x))/x =2 ?
1 Answer
Sep 28, 2017
lim_(x rarr 0) ((cotx)(1-cos2x))/x =2
Explanation:
We seek:
L = lim_(x rarr 0) ((cotx)(1-cos2x))/x
\ \ = lim_(x rarr 0) ((cosx/sinx)(1-(cos^2x-sin^2x)))/x
\ \ = lim_(x rarr 0) (cosx/sinx)((1-(1-sin^2x-sin^2x)))/x
\ \ = lim_(x rarr 0) (cosx/sinx)((2sin^2x))/x
\ \ = lim_(x rarr 0) (cosx) (2sinx)/x
\ \ = 2 lim_(x rarr 0) (cosx) ((sinx)/x)
\ \ = 2{ lim_(x rarr 0) (cosx)}{ lim_(x rarr 0) ((sinx)/x)}
\ \ = 2 * 1 * 1
\ \ = 2