Evaluate the limit lim_(h rarr 0) (1-cos h)/h^2 ?

1 Answer
Oct 19, 2017

We seek:

L = lim_(h rarr 0) (1-cos h)/h^2

Method 1 - L'Hôpital's rule

Both the numerator and the denominator rarr 0 as x rarr 0. thus the limit L (if it exists) is of an indeterminate form 0/0, and consequently, we can apply L'Hôpital's rule to get:

L = lim_(h rarr 0) (d/(dh)(1-cos h))/(d/(dh) h^2) = lim_(h rarr 0) (sinh)/(2h)

Again, we have an indeterminate form, so we can apply L'Hôpital's rule again:

L = lim_(h rarr 0) (d/(dh) sin h)/(d/(dh) 2h) = lim_(h rarr 0) (cos h)/(2)

And we can now directly evaluate this limit:

L = (cos0)/2 = 1/2

Method 2 - Trigonometric Manipulation

L = lim_(h rarr 0) (1-cos h)/h^2
\ \ = lim_(h rarr 0) (1-cos h)/h^2 * (1+cos h)/(1+cos h)
\ \ = lim_(h rarr 0) ( (1-cos h)(1+cos h) ) /( h^2(1+cos h) )
\ \ = lim_(h rarr 0) ( (1-cos^2h) ) /( h^2(1+cos h) )
\ \ = lim_(h rarr 0) ( sin^2h ) /( h^2(1+cos h) )
\ \ = lim_(h rarr 0) ( sin^2h )/h^2 * 1/(1+cos h )
\ \ = lim_(h rarr 0) ( sin h )/h * ( sinh )/h * 1/(1+cos h )
\ \ = {lim_(h rarr 0) ( sin h )/h} * {lim_(h rarr 0) ( sinh )/h }* {lim_(h rarr 0) 1/(1+cos h )}
\ \ = {lim_(h rarr 0) ( sin h )/h}^2 * {lim_(h rarr 0) 1/(1+cos h )}

And we note the first limit is a standard Calculus Trigonometry limit:

lim_(x rarr 0) (sinx)/x = 1

And the second limit can be calculated directly, leading to the desired result:

L = {1}^2 * {1/(1+cos 0 )}
\ \ = 1 * 1/(1+1)
\ \ = 1/2