Evaluate the limit lim_(h rarr 0) (1-cos h)/h^2 ?
1 Answer
We seek:
L = lim_(h rarr 0) (1-cos h)/h^2
Method 1 - L'Hôpital's rule
Both the numerator and the denominator
L = lim_(h rarr 0) (d/(dh)(1-cos h))/(d/(dh) h^2) = lim_(h rarr 0) (sinh)/(2h)
Again, we have an indeterminate form, so we can apply L'Hôpital's rule again:
L = lim_(h rarr 0) (d/(dh) sin h)/(d/(dh) 2h) = lim_(h rarr 0) (cos h)/(2)
And we can now directly evaluate this limit:
L = (cos0)/2 = 1/2
Method 2 - Trigonometric Manipulation
L = lim_(h rarr 0) (1-cos h)/h^2
\ \ = lim_(h rarr 0) (1-cos h)/h^2 * (1+cos h)/(1+cos h)
\ \ = lim_(h rarr 0) ( (1-cos h)(1+cos h) ) /( h^2(1+cos h) )
\ \ = lim_(h rarr 0) ( (1-cos^2h) ) /( h^2(1+cos h) )
\ \ = lim_(h rarr 0) ( sin^2h ) /( h^2(1+cos h) )
\ \ = lim_(h rarr 0) ( sin^2h )/h^2 * 1/(1+cos h )
\ \ = lim_(h rarr 0) ( sin h )/h * ( sinh )/h * 1/(1+cos h )
\ \ = {lim_(h rarr 0) ( sin h )/h} * {lim_(h rarr 0) ( sinh )/h }* {lim_(h rarr 0) 1/(1+cos h )}
\ \ = {lim_(h rarr 0) ( sin h )/h}^2 * {lim_(h rarr 0) 1/(1+cos h )}
And we note the first limit is a standard Calculus Trigonometry limit:
lim_(x rarr 0) (sinx)/x = 1
And the second limit can be calculated directly, leading to the desired result:
L = {1}^2 * {1/(1+cos 0 )}
\ \ = 1 * 1/(1+1)
\ \ = 1/2