Evaluate the limit lim_(n rarr 0) (lamda^n-mu^n)/n ?
3 Answers
lim_(n rarr 0) (lamda^n-mu^n)/n = ln (lamda/mu)
Explanation:
We seek:
L = lim_(n rarr 0) (lamda^n-mu^n)/n
Both the numerator and the denominator
L = lim_(n rarr 0) (d/(dn) (lamda^n-mu^n))/(d/(dn) n)
\ \ = lim_(n rarr 0) (lamda^n ln lamda - mu^n ln mu)/(1)
Which we can now just evaluate to get:
L = 1ln lamda- 1 ln mu
\ \ = ln lamda - ln mu
\ \ = ln (lamda/mu)
Explanation:
then
Explanation:
Let us use this Standard Form of Limit :
Hence,