Evaluate the limit lim_(n rarr 0) (lamda^n-mu^n)/n ?

3 Answers
Dec 24, 2017

lim_(n rarr 0) (lamda^n-mu^n)/n = ln (lamda/mu)

Explanation:

We seek:

L = lim_(n rarr 0) (lamda^n-mu^n)/n

Both the numerator and the denominator rarr 0 as x rarr 0 (because lamda^n rarr1 and mu^n rarr 1. Thus the limit L (if it exists) is of an indeterminate form 0/0, and consequently, we can apply L'Hôpital's rule to get:

L = lim_(n rarr 0) (d/(dn) (lamda^n-mu^n))/(d/(dn) n)

\ \ = lim_(n rarr 0) (lamda^n ln lamda - mu^n ln mu)/(1)

Which we can now just evaluate to get:

L = 1ln lamda- 1 ln mu
\ \ = ln lamda - ln mu
\ \ = ln (lamda/mu)

Dec 24, 2017

log_e(lambda/mu)

Explanation:

(lambda^n-mu^n)/n = (lambda^(0+n)-lambda^0)/n-(mu^(0+n)-mu^0)/n

then

lim_(n->0)(lambda^n-mu^n)/n = lim_(n->0)(lambda^(0+n)-lambda^0)/n-lim_(n->0)(mu^(0+n)-mu^0)/n = lambda'(0)-mu'(0) = log_elambda-log_e mu = log_e(lambda/mu)

Dec 28, 2017

ln(lambda/mu).

Explanation:

Let us use this Standard Form of Limit : lim_(h to 0)(a^h-1)/h=lna.

Hence, lim_(n to 0)(lambda^n-mu^n)/n,

=lim{(lambda^n-1)-(mu^n-1)}/n,

=lim{(lambda^n-1)/n-(mu^n-1)/n},

=lnlambda-lnmu,

=ln(lambda/mu).