Evaluate the limit lim_(x->0) (e^x+3x)^(1/x) ?

2 Answers
Feb 12, 2018

e^4

Explanation:

As we know e^x = 1+x+O(x^2) then

lim_(x->0)(e^x+3x)^(1/x) = lim_(x->0)(1+x+3x+O(x^2))^(1/x) = lim_(x->0)(1+x+3x)^(1/x)

now making y = 4x

lim_(x->0) (e^x+3x)^(1/x) =lim_(y->0)(1+y)^(4/y) = (lim_(y->0)(1+y)^(1/y))^4 = e^4

Feb 12, 2018

lim_(x->0) (e^x+3x)^(1/x) = e^4

Explanation:

Write the function as:

(e^x+3x)^(1/x) = (e^(ln(e^x+3x)))^(1/x) = e^(ln(e^x+3x)/x)

Consider now the limit:

lim_(x->0) ln(e^x+3x)/x

It is in the indeterminate form 0/0 so we can use l'Hospital's rule:

lim_(x->0) ln(e^x+3x)/x = lim_(x->0) (d/dx ln(e^x+3x))/(d/dx x)

lim_(x->0) ln(e^x+3x)/x = lim_(x->0) (e^x+3)/(e^x+3x) = 4

As the limit is finite and the function e^x is continuous for x in RR we have:

lim_(x->0) e^(ln(e^x+3x)/x) = e^((lim_(x->0) ln(e^x+3x)/x)) = e^4