A triangle has sides A, B, and C. The angle between sides A and B is #pi/6# and the angle between sides B and C is #pi/12#. If side B has a length of 5, what is the area of the triangle?

1 Answer
Sep 7, 2016

Area #~~ 2.2877#

Explanation:

If #/_BC=pi/12# and #/_AB=pi/6#
then
#color(white)("XXX")/_AC = pi- (pi/12+pi/6) =(3pi)/4#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

By the Law of Sines:
#color(white)("XXX")A/sin(/_BC)=B/sin(/_AC)=C/sin(/_AB)#

With the given values:
#color(white)("XXX")A/sin(pi/12)=5/sin((3pi)/4)=C/sin(pi/6)#

So
#color(white)("XXX")A=5/sin((3pi)/4)*sin(pi/12)~~1.830127019#
and
#color(white)("XXX")C=5/sin((3pi)/4)*sin(pi/6)~~3.535533906#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The semi-perimeter of the triangle, #s#, is
#color(white)("XXX")s=(A+B+C)/2~~5.182830462#

By Heron's Formula, the Area of the Triangle is
#color(white)("XXX")A=sqrt(s(s-A)(s-B)(s-C))#

#color(white)("XXXX")~~2.287658774#