A triangle has sides A, B, and C. The angle between sides A and B is π6 and the angle between sides B and C is π12. If side B has a length of 5, what is the area of the triangle?

1 Answer
Sep 7, 2016

Area 2.2877

Explanation:

If BC=π12 and AB=π6
then
XXXAC=π(π12+π6)=3π4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

By the Law of Sines:
XXXAsin(BC)=Bsin(AC)=Csin(AB)

With the given values:
XXXAsin(π12)=5sin(3π4)=Csin(π6)

So
XXXA=5sin(3π4)sin(π12)1.830127019
and
XXXC=5sin(3π4)sin(π6)3.535533906

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The semi-perimeter of the triangle, s, is
XXXs=A+B+C25.182830462

By Heron's Formula, the Area of the Triangle is
XXXA=s(sA)(sB)(sC)

XXXX2.287658774