Find lim x^4 - 8x/ x - 2 as x-->2 ??

Find lim (x^4 - 8x)/ (x - 2) as x-->2 ?

2 Answers
Jun 13, 2018

Answer for the question :
lim_(xto2) (x^4-8x)/(x-2)=24

Explanation:

We know that,

color(red)((1)a^3-b^3=(a-b)(a^2+ab+b^2)

Let,

L=lim_(xto2) (x^4-8x)/(x-2)

=>L=lim_(xto2) (x(x^3-8))/(x-2)

=>L=lim_(xto2) (xcolor(red)((x^3-2^3)))/((x-2))...to color(red)(Apply(1)

=>L=lim_(xto2)(xcolor(red)(cancel((x-2))(x^2+2x+4)))/(cancel((x-2)))...to[x!=2]

=>L=lim_(xto2) [x(x^2+2x+4)]

=>L=[2(2^2+2(2)+4)]

=>L=[2(4+4+4)]

=>L=24

Jun 13, 2018

lim_(x->2)(x^4-8x)/(x-2)=24

Explanation:

We have: lim_(x->2)(x^4-8x)/(x-2)

Since substituting two in the place of x results in 0/0, we can use the L'Hospital's Rule.

The rule states that: lim_(x->c)f(x)/g(x)=(f'(c))/(g'(c)) if f(c)/g(c) results in an indeterminate form such as 0/0.

Let's find the derivatives using the power rule: d/dx[x^n]=nx^(n-1) where n is a constant.

The numerator:

d/dx(x^4-8x)

=>4x^(4-1)-8x^(1-1)

=>4x^(3)-8x^(0)

=>4x^(3)-8*1

=>4x^(3)-8

The denominator:

d/dx(x-2)

=>1*x^(1-1)-2*0x^(0-1)

=>x^(0)-0

=>1

We now have:

(4x^(3)-8)/1 Substitute 2 in the place of x.

=>(4(2)^(3)-8)

=>24

Therefore, lim_(x->2)(x^4-8x)/(x-2)=24