Find the exact length of the curve (parametrics)?

Question 43:

Computer

1 Answer
May 16, 2018

L = (sqrt2+ln(sqrt2+1))/2

Explanation:

Let:

{(x=x(t)),(y=y(t)):}

with t_1 <= t <= t_2 be the equation of a curve, the length of the element of the curve is:

dl = sqrt(dx^2+dy^2) = sqrt(x'(t)^2+y'(t)) dt

and so the length is calculated with the integral:

L = int_(t_1)^(t_2) sqrt(x'(t)^2+y'(t)) dt

In this case (exercise 43):

{(x(t) = tsint),(y(t) = tcost):}

with 0<=t<=1

{(x'(t) = sint+tcost),(y'(t) = cost-tsint):}

L=int_0^1 sqrt( ( sint+tcost)^2 + (cost-tsint)^2)dt

L=int_0^1 sqrt( sin^2t+cancel(2tsintcost)+t^2cos^2t + cos^2 -cancel(2tsintcost) +t^2sin^2t)dt

L=int_0^1 sqrt( (sin^2t+cos^2t +t^2(sin^2t+cos^2t))dt

L=int_0^1 sqrt( 1+t^2)dt

Substitute:

t= tan theta

dt = sec^2 theta d theta

and the limits of integration become theta = 0 and theta = pi/4:

L=int_0^(pi/4) sec^2 theta sqrt( 1+tan^2 theta )d theta

Using the trigonometric identity:

1+tan^2 theta = sec^2 theta

and considering that for theta in [0,pi/4] the secant is positive:

sqrt( 1+tan^2 theta ) = sec theta

so:

L=int_0^(pi/4) sec^3 theta d theta

Integrate by parts:

L=int_0^(pi/4) sec theta * sec^2 theta d theta
L=int_0^(pi/4) sec theta d ( tantheta)
L=[sec theta tantheta ]_0^(pi/4) - int_0^(pi/4) tan theta d(sec theta)
L=sqrt2 - int_0^(pi/4) tan^2 theta sec theta d theta

L=sqrt2 - int_0^(pi/4) (sec^2 theta - 1)sec theta d theta

L=sqrt2 - int_0^(pi/4) sec^3 thetad theta + int_0^(pi/4) sec theta d theta

L=sqrt2 - L + [ln abs(sec theta +tan theta)]_0^(pi/4)

2L=sqrt2 + ln abs(sqrt2 +1)

L = (sqrt2+ln(sqrt2+1))/2