Find the limit for the given function? #lim_(t->0) text( ) ((text(sin)(8 t))^2)/t^2# () Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Feb 27, 2017 #64# Explanation: #sin(8t)/t = 8 sin(8t)/(8 t)# and #(sin(8t)/t)^2=64(sin(8t)/(8 t))^2# but #lim_(y->0)sin y/y = 1# so #lim_(t->0) (sin(8t)/t)^2 =64# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 2338 views around the world You can reuse this answer Creative Commons License