How do I find f'(x) for f(x)=4^sqrt(x) ?

1 Answer
Aug 30, 2014

By Chain Rule, we can find
f'(x)={(ln4)4^{sqrt{x}}}/{2sqrt{x}}.

Remember:
(b^x)'=(lnb)b^x

By Chain Rule,
f'(x)=(ln4)4^{sqrt{x}}cdot (sqrt{x})'=(ln4)4^{sqrt{x}}cdot{1}/{2sqrt{x}} ={(ln4)4^{sqrt{x}}}/{2sqrt{x}}