How do you find the derivative of x^(2x)?

1 Answer
Mar 1, 2015

The answer is: y'=2e^(2xlnx)(lnx+1).

Instead of remembering a complicate formula, we use these logarithmic properties:

a=e^lna or, better: a^b=e^ln(a^b)=e^(blna).

So our function becomes:

y=e^(2xlnx)

and

y'=e^(2xlnx)(2*1*lnx+2x*1/x)=2e^(2xlnx)(lnx+1).