How do I find f'(x) for f(x)=x^2*10^(2x) ?

1 Answer
Sep 20, 2014

The derivative of f(x)=x^2cdot10^{2x} is

f'(x)=2x(1+xln10)10^{2x}

Let us look at some details.

We need the following tools in your toolbox.

  1. Power Rule: (x^n)'=nx^{n-1}

  2. Exponential Rule: (b^x)'=(lnb)b^x

  3. Product Rule: [f(x)cdot g(x)]'=f'(x)cdot g(x)+f(x)cdot g'(x)

  4. Chain Rule: [f(g(x))]'=f'(g(x))cdot g'(x)

Let us find (10^{2x})' first.

By Chain Rule and Exponential Rule,

(10^{2x})'=(ln10)10^{2x}cdot(2x)'=2(ln10)10^{2x}

Now, we can find f'(x).

By Product Rule,

f'(x)=(x^2)'cdot10^{2x}+x^2cdot(10^{2x})'

by Power Rule and the derivative we found above,

=2xcdot 10^{2x}+x^2cdot2(ln10)10^{2x}

by factoring out 2x10^{2x},

=2x(1+xln10)10^{2x}