How do you find the derivative of y=(sinx)^(x^3)?

1 Answer
Jun 12, 2018

(dy)/(dx)=x^2(sinx)^(x^3)(x^2lnsinx+xcotx)

Explanation:

y=(sinx)^(x^3)

take natural logs

lny=ln(sinx)^(x^3)

=>lny=x^3lnsinx

d/(dx)(lny)=d/(dx)(x^3lnsinx)

differentiate wrtx

RHS using the product rule

1/y(dy)/(dx)=3x^2lnsinx+x^3cosx/sinx

(dy)/(dx)=y[x^2(3lnsinx+xcotx)]

(dy)/(dx)=x^2(sinx)^(x^3)(x^2lnsinx+xcotx)