How do solve without using derivative?

lim xrarr0 (sin(x^3+x^2-x)+sinx)/x

1 Answer
Dec 16, 2016

lim_(x->0)frac (sin(x^3+x^2-x)+sinx) x =0

Explanation:

You can resolve this limit without using derivatives by re-conducing it to the known limit:

lim_(x->0)sinx/x=1

We can proceed in this way:

frac (sin(x^3+x^2-x)+sinx) x = frac (sin(x^3+x^2-x) )x + frac (sinx) x = frac (sin(x^3+x^2-x) ) (x^3+x^2-x)* frac (x^3+x^2-x) x+ frac (sinx) x = frac (sin(x^3+x^2-x) ) (x^3+x^2-x)* (x^2+x-1) + frac (sinx) x

Thus:
lim_(x->0)frac (sin(x^3+x^2-x)+sinx) x =lim_(x->0)frac (sin(x^3+x^2-x) ) (x^3+x^2-x)* (x^2+x-1) + frac (sinx) x = 1*(-1)+1=0