How do you differentiate #f(x)=sinx(tanx)#?

1 Answer
Aug 4, 2017

#f'(x) = sinx + secxtanx#

Explanation:

#f(x) = sinx tanx#

In order to find #f'#, use the product rule:

#(fg)' =gf'+fg'#

#sinx' = cosx#

#tanx'=sec^2x#

#f'(x) = cosxtanx + sec^2xsinx=cosxsinx/cosx+(sinxsecx)secx=sinx+secxtanx#