How do you differentiate y=1/(sinx+cosx)?

1 Answer
Aug 16, 2017

dy/dx=-(sinx-cosx)/(sinx+cosx)^2

Explanation:

"we can use either the "color(blue)"quotient or chain rules"

y=1/(sinx+cosx)=(sinx+cosx)^-1

"differentiate using the "color(blue)"chain rule"

•color(white)(x)d/dx(f(g(x)))=f'(g(x)xxg'(x)

rArrdy/dx=-(sinx+cosx)^-2xxd/dx(sinx+cosx)

color(white)(rArrdy/dx)=-(sinx-cosx)/(sinx+cosx)^2

"differentiating using the "color(blue)"quotient rule"

"given "y=(g(x))/(h(x))" then "

dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2

g(x)=1rArrg'(x)=0

h(x)=sinx+cosxrArrh'(x)=cosx-sinx

rArrdy/dx=((sinx+cosx).0-(cosx-sinx))/(sinx+cosx)^2

color(white)(rArrdy/dx)=-(sinx-cosx)/(sinx+cosx)^2