How do you differentiate y=1/(sinx+cosx)?
1 Answer
Aug 16, 2017
Explanation:
"we can use either the "color(blue)"quotient or chain rules"
y=1/(sinx+cosx)=(sinx+cosx)^-1
"differentiate using the "color(blue)"chain rule"
•color(white)(x)d/dx(f(g(x)))=f'(g(x)xxg'(x)
rArrdy/dx=-(sinx+cosx)^-2xxd/dx(sinx+cosx)
color(white)(rArrdy/dx)=-(sinx-cosx)/(sinx+cosx)^2
"differentiating using the "color(blue)"quotient rule"
"given "y=(g(x))/(h(x))" then "
dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2
g(x)=1rArrg'(x)=0
h(x)=sinx+cosxrArrh'(x)=cosx-sinx
rArrdy/dx=((sinx+cosx).0-(cosx-sinx))/(sinx+cosx)^2
color(white)(rArrdy/dx)=-(sinx-cosx)/(sinx+cosx)^2