How do you differentiate y=1sinx+1cosx?

2 Answers
Oct 31, 2016

dydx=cotxcscx+tanxsecx

Explanation:

You should learn that 1sinx=cscx and 1cosx=secx
And, ddxcscx=cscxcotx and ddxsecx=secxtanx

These resul;ts can be obtained using the quotient rule;
ddx(uv)=vdudxudvdxv2;

y=1sinx+1cosx

dydx=(sinx)(ddx1)(1)(ddxsinx)(sinx)2+(cos)(ddx1)(1)(ddxcosx)(cosx)2

dydx={0(1)(cosx)(sinx)2}+{0(1)(sinx)(cosx)2}

dydx=cosx(sinx)2+sinx(cosx)2
dydx=cosxsinx1sinx+sinxcosx1cosx
dydx=cotxcscx+tanxsecx

Oct 31, 2016

y=1sinx+1cosx

y=cscx+secx

dydx=cotxcscx+secxtanx

To find out how to differentiate cscx using implicit differentiation watch this video:

To find out how to differentiate secx using implicit differentiation watch this video: