How do you evaluate the limit #(1/(x+2)-1/2)/x# as x approaches #0#? Calculus Limits Determining Limits Algebraically 1 Answer Noah G Nov 10, 2016 The limit is #-1/4#. Explanation: #=lim_(x->0) ((2 - (x + 2))/(2(x + 2)))/x# #=lim_(x->0) ((2 - x - 2)/(2(x+ 2)))/x# #=lim_(x->0) ((-x)/(2(x+ 2)))/x# #=lim_(x->0) (-x)/(2(x + 2)) xx 1/x# #=lim_(x->0) -1/(2(x + 2))# #= -1/(2(0 + 2))# #=-1/4# Hopefully this helps! Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 12636 views around the world You can reuse this answer Creative Commons License