How do you find the Limit of #(lnx)^3/x^2# as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Jim S Jun 3, 2018 #lim_(xto+oo)(lnx)^3/x^2=0# Explanation: #lim_(xto+oo)(lnx)^3/x^2=_(DLH)^(((+oo)/(+oo)))# #lim_(xto+oo)((3(lnx)^2)/x)/(2x)=# #lim_(xto+oo)(3(lnx)^2)/(2x^2)=# #3/2lim_(xto+oo)(lnx/x)^2=0# because #lim_(xto+oo)lnx/x=_(DLH)^(((+oo)/(+oo)))# #lim_(xto+oo)1/x=^((1/(+oo)))=0# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 8403 views around the world You can reuse this answer Creative Commons License