How do you solve 2x-4/7=1/2x+9/14?

1 Answer
Feb 15, 2017

See the entire solution process below:

Explanation:

First, multiply each side of the equation by color(red)(14) to eliminate the fractions while keeping the equation balanced. It will be easier to solve the equation without fractions and color(red)(14) is the lowest common denominator for the three fractions:

color(red)(14)(2x - 4/7) = color(red)(14)(1/2x + 9/14)

(color(red)(14)xx 2x) - (color(red)(14)xx 4/7) = (color(red)(14) xx 1/2x) + (color(red)(14)xx 9/14)

28x - (cancel(color(red)(14)) 2 xx 4/color(red)(cancel(color(black)(7)))) = (cancel(color(red)(14)) 7 xx 1/color(red)(cancel(color(black)(2)))x) + (cancel(color(red)(14)) xx 9/color(red)(cancel(color(black)(14))))

28x - 8 = 7x + 9

Next, add color(red)(8) and subtract color(blue)(7x) from each side of the equation to isolate the x term while keeping the equation balanced:

28x - 8 + color(red)(8) - color(blue)(7x) = 7x + 9 + color(red)(8) - color(blue)(7x)

28x - color(blue)(7x) - 8 + color(red)(8) = 7x - color(blue)(7x) + 9 + color(red)(8)

28x - color(blue)(7x) - 8 + color(red)(8) = 7x - color(blue)(7x) + 9 + color(red)(8)

21x - 0 = 0 + 17

21x = 17

Now, divide each side of the equation by color(red)(21) to solve for x while keeping the equation balanced:

(21x)/color(red)(21) = 17/color(red)(21)

(color(red)(cancel(color(black)(21)))x)/cancel(color(red)(21)) = 17/21

x = 17/21