How do you solve sqrt(2x-1) - sqrt(x+7) = 0?

2 Answers
Jan 24, 2016

x=8

Explanation:

sqrt(2x-1) - sqrt(x+7) = 0

=>sqrt(2x-1) = sqrt(x+7)

=> 2x-1 = x+7

=> 2x-x = 7+1

=> x = 8

Feb 21, 2016

x=8

Explanation:

color(blue)(sqrt(2x-1)-sqrt(x+7)=0

Add sqrt(x+7) both sides

rarrsqrt(2x-1)=sqrt(x+7)

Square both sides to get rid of the radical sign

rarr(sqrt(2x-1))^2=(sqrt(x+7))^2

rarr2x-1=x+7

Subtract x both sides

rarrx-1=7

color(green)(rArrx=7+1=8

Check

color(brown)(sqrt(2(8)-1)-sqrt(8+7)=0

color(brown)(sqrt(16-1)-sqrt(8+7)=0

color(brown)(sqrt15-sqrt15=0

So,It is true