This si a table of what we know:
I like to put all the information in one place so I can keep track of everything
#Pcolor(white)(.) ?color(white)(.............)pcolor(white)(.)12#
#Qcolor(white)(.)80 color(white)(.............)qcolor(white)(.)?#
#Rcolor(white)(.)30 color(white)(.............)rcolor(white)(.)?#
Capital letters are angles, lowercase are lengths
We know that all angles in a triangle must add to #180^o#. So, if we have #80^o# and #30^o# (#110^o#), then the last remaining angle must be #70^o# #(180-110=70)#.
#Pcolor(white)(.)70^o color(white)(.............)pcolor(white)(.)12#
#Qcolor(white)(.)80^o color(white)(.............)qcolor(white)(.)?#
#Rcolor(white)(.)30^o color(white)(.............)rcolor(white)(.)?#
Now we know one angle-length pair (Q), so we can find the remaining lengths.
#color(white)(0)#
Solving for #color(red)(q)#
#(sin(70))/12=(sin(80))/q#
#sin(80)*12/(sin(70))=q#
#q~~12.576#
#color(white)(0)#
Solving for #color(red)(r)#
#(sin(70))/12=(sin(30))/r#
#sin(30)*12/(sin(70))=r#
#r~~6.385#
Now we have everything:
#Pcolor(white)(.)70 color(white)(.............)pcolor(white)(.)12#
#Qcolor(white)(.)80 color(white)(.............)qcolor(white)(.)12.576#
#Rcolor(white)(.)30 color(white)(.............)rcolor(white)(.)6.385#