How do you solve the triangle given #trianglePQR, p=12, mangleQ=80, mangleR=30#?

1 Answer

#Pcolor(white)(.)70^o color(white)(.............)pcolor(white)(.)12#
#Qcolor(white)(.)80^o color(white)(.............)qcolor(white)(.)12.576#
#Rcolor(white)(.)30^o color(white)(.............)rcolor(white)(.)6.385#

Explanation:

This si a table of what we know:

I like to put all the information in one place so I can keep track of everything
#Pcolor(white)(.) ?color(white)(.............)pcolor(white)(.)12#
#Qcolor(white)(.)80 color(white)(.............)qcolor(white)(.)?#
#Rcolor(white)(.)30 color(white)(.............)rcolor(white)(.)?#

Capital letters are angles, lowercase are lengths

We know that all angles in a triangle must add to #180^o#. So, if we have #80^o# and #30^o# (#110^o#), then the last remaining angle must be #70^o# #(180-110=70)#.

#Pcolor(white)(.)70^o color(white)(.............)pcolor(white)(.)12#
#Qcolor(white)(.)80^o color(white)(.............)qcolor(white)(.)?#
#Rcolor(white)(.)30^o color(white)(.............)rcolor(white)(.)?#

Now we know one angle-length pair (Q), so we can find the remaining lengths.

#color(white)(0)#
Solving for #color(red)(q)#
#(sin(70))/12=(sin(80))/q#

#sin(80)*12/(sin(70))=q#

#q~~12.576#

#color(white)(0)#

Solving for #color(red)(r)#

#(sin(70))/12=(sin(30))/r#

#sin(30)*12/(sin(70))=r#

#r~~6.385#

Now we have everything:

#Pcolor(white)(.)70 color(white)(.............)pcolor(white)(.)12#
#Qcolor(white)(.)80 color(white)(.............)qcolor(white)(.)12.576#
#Rcolor(white)(.)30 color(white)(.............)rcolor(white)(.)6.385#