#lim_(x->3) (sqrt3x-3)/(sqrt(2x-4) - sqrt2)# Evalute?

1 Answer
Apr 11, 2017

The Limit does not exist.

Explanation:

Reqd Lim.#=lim_(x to 3)(sqrt3x-3)/(sqrt(2x-4)-sqrt2).#

#=lim_(x to 3)(sqrt3x-3)/(sqrt(2x-4)-sqrt2)xx(sqrt(2x-4)+sqrt2)/(sqrt(2x-4)+sqrt2).#

#=lim_(x to 3) {(sqrt3x-3)(sqrt(2x-4)+sqrt2)}/{(2x-4)-2}#

#=lim_(x to 3){(sqrt3x-3)(sqrt(2x-4)+sqrt2)}/{2(x-3)}#

So, as long as, #(x-3)# is there in the Dr., the limit does not exist.