Evaluate lim_(x rarr oo) (2x)/3 * sin(3/x )* sec(5/x) ?

2 Answers
Apr 28, 2018

the answer of lim_(xrarroo)[(2x)/3*sin(3/x)*sec(5/x)]=2

Explanation:

if your question was ypu must use laplace law

lim_(xrarroo)[(2x)/3*sin(3/x)*sec(5/x)] Direct compensation product (oo*0)

lim_(xrarroo)[(sin(3/x)*sec(5/x))/(3/(2x)]] Direct compensation product (0/0)

f(x)=sin(3/x)*sec(5/x)

g(x)=(3/(2x))

lim_(xrarra)[(f(x)')/(g(x)')] if the Direct compensation product equal (0/0)

lim_(xrarroo)[[-(sec(5/x)*(5*sin(3/x)*tan(5/x)+3*cos(3/x)))/x^2]/[-3/(2*x^2)]]

lim_(xrarroo)[(2*(sec(5/x))*(5*sin(3/x)*tan(5/x)+3*cos(3/x)))/3]

=[[(2)(5*0*0+3))/3]=6/3=2

Apr 28, 2018

2.

Explanation:

We will use

lim_(theta to 0)sintheta/theta=1, lim_(theta to 0)sectheta=1.

Set 1/x=y," so that, as "x to oo, y to 0.

:." The Reqd. Lim."=lim_(y to 0)2/(3y)*sin3ysec5y,

=lim_((3y) to 0)2{(sin3y)/(3y)}{lim_((5y) to 0)sec5y},

=2*1*1,

=2.