What is the arc length of f(t)=(lnt,5-lnt) over t in [3,4] ?

1 Answer

Arc length l= sqrt(2)*(ln 4-ln 3)

l=0.406844

Explanation:

l=int sqrt((dy/dt)^2+(dx/dt)^2) dt

Solve for dx/dt given x=ln t

dx/dt=(1/t)

Solve for dy/dt given y=5-ln t

dy/dt=-1*1/t

Solve for the length l

l=int_a^b sqrt((dy/dt)^2+(dx/dt)^2) dt

a=3 and b=4

l=int_3^4 sqrt((dy/dt)^2+(dx/dt)^2) dt

l=int_3^4 sqrt((-1/t)^2+(1/t)^2) dt

l=int_3^4 sqrt(2/t^2) dt

l=int_3^4 sqrt(2)/t dt

l= sqrt(2)*(ln 4-ln 3)

l=0.406844

God bless....I hope the explanation is useful.