What is the arc length of f(t)=(sqrt(t-1),2-8t) f(t)=(√t−1,2−8t) over t in [1,3]t∈[1,3]?
1 Answer
Mar 12, 2018
Explanation:
f(t)=(sqrt(t−1),2−8t)f(t)=(√t−1,2−8t)
f'(t)=(1/(2sqrt(t−1)),−8)
Arc length is given by:
L=int_1^3sqrt(1/(4(t−1))+64)dt
Apply the substitution
L=int_0^sqrt2sqrt(1/(4u^2)+64)(2udu)
Simplify:
L=int_0^sqrt2sqrt(1+256u^2)du
Apply the substitution
L=1/16intsec^3thetad theta
This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:
L=1/32[secthetatantheta+ln|sectheta+tantheta|]
Reverse the last substitution:
L=[1/2usqrt(1+256u^2)+1/32ln|16u+sqrt(1+256u^2)|]_0^sqrt2
Insert the limits of integration:
L=3/2sqrt114+1/32ln(16sqrt2+3sqrt57)