What is the arc length of f(t)=(sqrt(t-1),2-8t) f(t)=(t1,28t) over t in [1,3]t[1,3]?

1 Answer
Mar 12, 2018

L=3/2sqrt114+1/32ln(16sqrt2+3sqrt57)L=32114+132ln(162+357) units.

Explanation:

f(t)=(sqrt(t−1),2−8t)f(t)=(t1,28t)

f'(t)=(1/(2sqrt(t−1)),−8)

Arc length is given by:

L=int_1^3sqrt(1/(4(t−1))+64)dt

Apply the substitution t-1=u^2:

L=int_0^sqrt2sqrt(1/(4u^2)+64)(2udu)

Simplify:

L=int_0^sqrt2sqrt(1+256u^2)du

Apply the substitution 16u=tantheta:

L=1/16intsec^3thetad theta

This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:

L=1/32[secthetatantheta+ln|sectheta+tantheta|]

Reverse the last substitution:

L=[1/2usqrt(1+256u^2)+1/32ln|16u+sqrt(1+256u^2)|]_0^sqrt2

Insert the limits of integration:

L=3/2sqrt114+1/32ln(16sqrt2+3sqrt57)