What is the arclength of (1/(t+te^t),-t)(1t+tet,−t) on t in [3,4]t∈[3,4]?
1 Answer
Approximate arc length via a numerical method is:
1.00 1.00 (2dp)
Explanation:
The arc length of a curve:
bb(vec(r)) (t) = << x(t), y(t) >>
Over an interval
L = int_a^b \ || bb(vec(r)) (t) || \ dt
\ \ = int_a^b \ sqrt(x'(t)^2 +y'(t)^2) \ dt
So, for the given curve:
bb(vec( r ))(t) = << 1/(t+te^t),-t >> \ \ \ t in [3,4]
Differentiating the components wrt
x'(t) = -(t+te^t)^(-2)d/dt(t+te^t)
" " = -(t+te^t)^(-2)(1+(t)(e^t)+(1)(e^t))
" " = -((1+e^t+te^t))/(t+te^t)^(2)
y'(t) = -1
So, the arc length is given by:
L = int_3^4 \ sqrt( x'(t)^2+y'(t)^2 ) \ dt
\ \ = int_3^4 \ sqrt( (-((1+e^t+te^t))/(t+te^t)^(2))^2+(-1)^2 ) \ dt
\ \ = int_3^4 \ sqrt( 1+ (1+e^t+te^t)^2/(t+te^t)^4) \ dt
The integral does not have an elementary antiderivative,and so we evaluate the definite integral numerically:
L = 1.000072796710095 ...