What is the arclength of (e^(-2t)-t^2,t-t/e^(t-1)) on t in [-1,1]?

1 Answer
Jun 10, 2018

approx 10.37224180

Explanation:

We have

x(t)=e^(-2t)-t^2
then
x'(t)=-2^(-2t)-2t+

y(t)=t-t/e^(t-1)
then

y'(t)=1-e^(1-t)+e^(1-t)t
so we get the integral
int_(-1)^1sqrt((-2e^(-2t)-2t)^2+(1-e^(1-t)+e^(1-t)t)^2)dt
By a numerical method we get

approx10.37224180