What is the arclength of ((e^tlnt)/t,t/(e^tlnt)) on t in [2,4]?

1 Answer
Dec 25, 2015

f(t) = (e^tln(t))/t

g(t) = t/(e^tln(t))

(df)/dt = (e^t((t-1)ln(t)+1))/t^2

(dg)/dt = (e^(-t)(ln(t)(1-t)-1))/ln^2(t)

Gamma(t) = int_2^4sqrt(((df)/dt)^2+((dg)/dt)^2)dt

Gamma(t) = int_2^4sqrt(((e^t((t-1)ln(t)+1))/t^2)^2 + ((e^(-t)(ln(t)(1-t)-1))/ln^2(t))^2)

Which is ~~ 16.371300234854

Note : Of course integral is not defined