What is the arclength of f(t) = (sint*cos2t,sint)f(t)=(sintcos2t,sint) on t in [-pi,0]t[π,0]?

1 Answer
Jun 10, 2018

approx 3.9438051905870533.943805190587053

Explanation:

We have
x(t)=sin(t)cos(2*t)x(t)=sin(t)cos(2t)
x'(t)=cos(t)cos(2t)-2sin(t)sin(2t)

y(t)=sin(t)
y'(t)=cos(t)
so we have to integrate

int_(-pi)^0sqrt((cos(t)cos(2t)-2sin(t)sin(2t))^2+cos^2(t))dt
i got only a numerical result

approx 3.943805190587053