What is the arclength of f(t) = (t-2,1/(t-2)) on t in [0,1]?

1 Answer
Oct 16, 2016

Use the equation:

L = int_a^bsqrt((dx/dt)^2 + (dy/dt)^2)dt

L ≈ 1.13209

Explanation:

The arc length, L, for parametric equations is:

L = int_a^bsqrt((dx/dt)^2 + (dy/dt)^2)dt

dx/dt = 1
dy/dt = -(t - 2)^-2
a = 0
b = 1

L = int_0^1sqrt((1)^2 + (-(t - 2)^-2)^2)dt

L = int_0^1sqrt(1 + (t - 2)^-4)dt

WolframAlpha integration

L ≈ 1.13209