What is the arclength of f(t) = (t^2sqrt(t-1),t^2+t-1)f(t)=(t2t1,t2+t1) on t in [2,3]t[2,3]?

1 Answer
May 1, 2017

"Arclength " approx 10.601267Arclength 10.601267

Explanation:

f(t)=(t^2sqrt(t-1),t^2+t-1)f(t)=(t2t1,t2+t1)

Formula for parametric arclength: color(blue)(L = int_a^b sqrt((dx/dt)^2+(dy/dt)^2)" "dt)L=ba(dxdt)2+(dydt)2 dt

First, find f'(t) by differentiating f(t)

dx/dt=(t^2)(1/2(t-1)^(-1/2))+(2t)(t-1)^(1/2)

dx/dt=frac{t^2}{2sqrt(t-1)}+2tsqrt(t-1)=frac{t^2+4t(t-1)}{2sqrt(t-1)}

dy/dt=2t+1

Plug in expressions for dx/dt and dy/dt into the arclength formula:
L=int_2^3sqrt((frac{t^2+4t(t-1)}{2sqrt(t-1)})^2+(2t+1)^2)" "dt

Use a calculator to evaluate:
"Arclength " approx 10.601267