What is the arclength of f(t) = (t^3-t+55,t^2-1) on t in [2,3]?
1 Answer
Explanation:
f(t)=(t^3-t+55,t^2-1)
f'(t)=(3t^2-1,2t)
Arclength is given by:
L=int_2^3sqrt((3t^2-1)^2+(2t)^2)dt
Expand the squares:
L=int_2^3sqrt(9t^4-2t^2+1)dt
Complete the square in the square root:
L=1/3int_2^3sqrt((9t^2-1)^2+8)dt
Rearrange:
L=1/3int_2^3(9t^2-1)sqrt(1+8/(9t^2-1)^2)dt
For
L=1/3int_2^3(9t^2-1){sum_(n=0)^oo((1/2),(n))(8/(9t^2-1)^2)^n}dt
Isolate the
L=1/3int_2^3(9t^2-1)dt+1/3sum_(n=1)^oo((1/2),(n))8^nint_2^3 1/(9t^2-1)^(2n-1)dt
Apply partial fraction decomposition:
L=1/3[3t^3-t]_ 2^3+2/3sum_(n=1)^oo((1/2),(n))2^nint_2^3(1/(3t-1)-1/(3t+1))^(2n-1)dt
For ease of reading, apply the substitution
L=56/3+2/9sum_(n=1)^oo((1/2),(n))2^nint_6^9(1/(u-1)-1/(u+1))^(2n-1)du
The