What is the arclength of f(t) = (t^3-t+55,t^2-1) on t in [2,3]?

1 Answer
Jun 20, 2018

L=56/3+2/9sum_(n=1)^oo((1/2),(n))2^nint_6^9(1/(u-1)-1/(u+1))^(2n-1)du units.

Explanation:

f(t)=(t^3-t+55,t^2-1)

f'(t)=(3t^2-1,2t)

Arclength is given by:

L=int_2^3sqrt((3t^2-1)^2+(2t)^2)dt

Expand the squares:

L=int_2^3sqrt(9t^4-2t^2+1)dt

Complete the square in the square root:

L=1/3int_2^3sqrt((9t^2-1)^2+8)dt

Rearrange:

L=1/3int_2^3(9t^2-1)sqrt(1+8/(9t^2-1)^2)dt

For t in [2,3], 8/(9t^2-1)^2<1. Take the series expansion of the square root:

L=1/3int_2^3(9t^2-1){sum_(n=0)^oo((1/2),(n))(8/(9t^2-1)^2)^n}dt

Isolate the n=0 term and simplify:

L=1/3int_2^3(9t^2-1)dt+1/3sum_(n=1)^oo((1/2),(n))8^nint_2^3 1/(9t^2-1)^(2n-1)dt

Apply partial fraction decomposition:

L=1/3[3t^3-t]_ 2^3+2/3sum_(n=1)^oo((1/2),(n))2^nint_2^3(1/(3t-1)-1/(3t+1))^(2n-1)dt

For ease of reading, apply the substitution 3t=u:

L=56/3+2/9sum_(n=1)^oo((1/2),(n))2^nint_6^9(1/(u-1)-1/(u+1))^(2n-1)du

The n=1 case is trivial.