What is the arclength of f(t) = (t-sqrt(t^2+2),t+te^(t-2))f(t)=(tt2+2,t+tet2) on t in [-1,1]t[1,1]?

1 Answer

Arc length s=3.2352212144206" "s=3.2352212144206 units

Explanation:

The formula to obtain the arc length ss

s=int_(t_1)^(t_2) sqrt((dx/dt)^2+(dy/dt)^2)*dts=t2t1(dxdt)2+(dydt)2dt

From the given f(t)=(t-sqrt(t^2+2), t+t*e^(t-2))f(t)=(tt2+2,t+tet2)

We have x=t-sqrt(t^2+2)" "x=tt2+2 and y= t+t*e^(t-2)y=t+tet2

We need to obtain the derivatives (dx)/dtdxdt and (dy)/dtdydt

(dx)/dt=1-t/sqrt(t^2+2)" "dxdt=1tt2+2 and (dy)/dt=1+t*e^(t-2)+e^(t-2)dydt=1+tet2+et2

We solve now the arclength ss

s=int_(t_1)^(t_2) sqrt((dx/dt)^2+(dy/dt)^2)*dts=t2t1(dxdt)2+(dydt)2dt

s=int_(-1)^(1) sqrt((1-t/sqrt(t^2+2))^2+(1+t*e^(t-2)+e^(t-2))^2)*dts=11(1tt2+2)2+(1+tet2+et2)2dt

The integral is complicated and requires the use of calculator or Simpson's Rule formula

s=int_(-1)^(1) sqrt((1-t/sqrt(t^2+2))^2+(1+t*e^(t-2)+e^(t-2))^2)*dts=11(1tt2+2)2+(1+tet2+et2)2dt

s=3.2352212144206" "s=3.2352212144206 units

God bless....I hope the explanation is useful.