What is the arclength of (sint/(t+cos2t),cost/(2t)) on t in [pi/12,pi/3]?

1 Answer
Oct 14, 2016

Use L = int_(pi/12)^(pi/3)sqrt((dx/dt)^2+ (dy/dt)^2)dt~~ 2.34

Explanation:

Given:
x = sin(t)/(t + cos(2t))
y = cos(t)/2t

Derivative by WolframAlpha

dx/dt = (sin(t) (2 sin(2 t)-1)+cos(t) (t+cos(2 t)))/(t+cos(2 t))^2

Derivative by WolframAlpha

dy/dt = -(t sin(t)+cos(t))/(2 t^2)

Arc length with parametric equations

L = int_(alpha)^(beta)sqrt((dx/dt)^2+ (dy/dt)^2)dt

L = int_(pi/12)^(pi/3)sqrt(((sin(t) (2 sin(2 t)-1)+cos(t) (t+cos(2 t)))/(t+cos(2 t))^2)^2 + (-(t sin(t)+cos(t))/(2 t^2))^2)dt

Integration by WolframAlpha

L ~~ 2.34