What is the arclength of (sqrt(3t-2),1/sqrt(t+3)) on t in [1,3]?

1 Answer
May 13, 2017

approx 1.64833

Explanation:

The arc length for a parametric function is:
L=int_a^b (sqrt((dx/dt)^2+(dy/dt)^2))dt

In order to plug in values into this equation, we need to find dx/dt and dy/dt by differentiating the given function (x(t),y(t)):

x(t)=(3t-2)^(1/2)

dx/dt=1/2(3t-2)^(-1/2)(3)=3/2(3t-2)^(-1/2)=frac{3}{2sqrt(3t-2)}

y(t)=(t+3)^(-1/2)

dy/dt=(-1/2)(t+3)^(-3/2)=frac{-1}{2(t+3)^(3/2)}

L=int_1^3(sqrt((frac{3}{2sqrt(3t-2)})^2+(frac{-1}{2(t+3)^(3/2)})^2))dt

=int_1^3(sqrt(frac{9}{4(3t-2)}+frac{1}{4(t+3)^3}))dt

approx 1.64833