What is the arclength of (sqrt(e^(t^2)/(e^t)+1),t^3) on t in [-1,1]?

1 Answer

s=2.86658 units

Explanation:

Given x(t)=sqrt(e^(t^2-t) +1) and y(t)=t^3

dx/dt=((e^(t^2-t))(2t-1))/(2 sqrt(e^(t^2-t) +1)

dy/dt = 3 t^2

s = int_-1^1 sqrt((dx/dt)^2 + (dy/dt)^2) dt

s = int_-1^1 sqrt( (( ( e^(t^2-t) )(2t-1))/(2 sqrt(e^(t^2-t) +1)))^2 + (3 t^2)^2) dt

the integral is complicated so Simpson's Rule is used:

so that s=2.86658