What is the arclength of (t^2-t,t^2-1) on t in [-1,1]?

1 Answer
Jun 16, 2018

L=1/8(3sqrt5+5sqrt13)+1/(8sqrt2)ln((sqrt10+3)/(sqrt26-5)) units.

Explanation:

f(t)=(t^2-t,t^2-1)

f'(t)=(2t-1,2t)

Arclength is given by:

L=int_-1^1sqrt((2t-1)^2+4t^2)dt

Expand the square:

L=int_-1^1sqrt(8t^2-4t+1)dt

Complete the square:

L=1/sqrt2int_-1^1sqrt((4t-1)^2+1)dt

Apply the substitution 4t-1=tantheta:

L=1/(4sqrt2)intsec^3thetad theta

This is a known integral. If you do not have it memorized apply integration by parts or look it up in a table of integrals:

L=1/(8sqrt2)[secthetatantheta+ln|sectheta+tantheta|]

Reverse the substitution:

L=1/(8sqrt2)[(4t-1)sqrt((4t-1)^2+1)+ln|4t-1+sqrt((4t-1)^2+1)|]_-1^1

Insert the limits of integration:

L=1/(8sqrt2)(3sqrt10+5sqrt26+ln((3+sqrt10)/(-5+sqrt26)))

Hence:

L=1/8(3sqrt5+5sqrt13)+1/(8sqrt2)ln((sqrt10+3)/(sqrt26-5))