What is the arclength of (t^2lnt,t-lnt) on t in [1,2]?

1 Answer
Aug 21, 2017

f(t)=(t^2lnt,t-lnt)

f'(t)=(2tlnt+t,t-1/t)

For a parametric function f(t)=(x,y), the arc length for tin[a,b] is given by:

s=int_a^bsqrt((dx/dt)^2+(dy/dt)^2)dt

Thus, we have an arc length of:

color(blue)(s=int_1^2sqrt((2tlnt+t)^2+(t-1/t)^2)dtapprox2.8914

Find the approximation using a calculator or a website like WolframAlpha.