What is the arclength of (t^2lnt,t-lnt) on t in [1,2]?
1 Answer
Aug 21, 2017
f(t)=(t^2lnt,t-lnt)
f'(t)=(2tlnt+t,t-1/t)
For a parametric function
s=int_a^bsqrt((dx/dt)^2+(dy/dt)^2)dt
Thus, we have an arc length of:
color(blue)(s=int_1^2sqrt((2tlnt+t)^2+(t-1/t)^2)dtapprox2.8914
Find the approximation using a calculator or a website like WolframAlpha.